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ELECTRIC FIELD OF A CHARGED WIRE AND A
SLOTTED CYLINDRICAL CONDUCTOR

By Chester Snow

ABSTRACT

The potential U, at any point z=x-\-iy=re^^, in the X7j plane is found which

is due to a line charge Q at the origin, perpendicular to the xy plane, in the presence

of a certain outer shield at zero potential. This shield consists of a cylindrical

shell of no radial thickness having the line charge for its axis, whose trace on the

xy plane is that part of the circular arc r— a whose angle 6 lies between the limits

— p and p where p is a positive angle less than tt. This potential is given as the

real part of the expression

(z— a) cos2 ~+{z-\-oc) sin2 ^+7(2— ae'p) (2— ae-'P)

Ui-iV=Q\og
— (2— a)cos2 ?+(2+ a) sin2 ^+V(2— ae'^) (z— ae"'^)

where the radical denotes that branch whose real part is positive when the point

z is external to the circle. (This is a special case of the more general problem

which is also solved in the paper, in which the line charge may have any position

in the plane or may be absent entirely.)

The surface density <r of the induced charge at a point d on the charged arc is

found from the above equation to have the value

4:ira iVtan^l- tan2

1

±1

the upper sign corresponding to the inner density (on the concave side) , the lower

to the outer. The outer density vanishes with the closing of the circle; that is,

when p— TT.

By making the transformation

fr= Rn

the corresponding solution is obtained for n equal, equally spaced concentric

arcs on the circle of radius R=a=a^ with a line charge at the origin.
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I. INTRODUCTION

The electrostatic problem here solved is that of finding the potential

due to a charged conducting wire (treated as a line charge) which is

surrounded by a slotted cylinder at zero potential. This outer

cylinder is of negligible thickness radially and the slots are parallel

to its generating lines, equal, and equally spaced. This is an idealized

case, which was undertaken for the purpose of estimating the effect

of perforating an outer cylindrical shield upon the strength of field.

^

The problem thus simplified admits of an exact solution in finite

terms and the methods used possess a mathematical interest. The
results may also be of practical value in other distinct lines of physical

research.

The mathematical problem of discovering a potential function

which is a solution of Laplace's equation, and which reduces to

certain assigned constant values on the conducting contours which

bound the space, is in many cases simplified by a succession of

transformations between complex variables, each of which may be

represented on a plane. For, as is well known, the real part, and the

imaginary part, of a complex function is each a solution of Laplace's

equation in the particular variables used, so that one may be assured

that if a potential function which fits the required boundary values

is arrived at in this manner, then the partial differential equation

will also be satisfied. With the mind thus freed of any responsi-

bility for the differential equation, the whole attention may then be

devoted to devising or discovering transformations from plane to

plane in which the conducting boimdary curves are more amenable

to the known processes of building up a solution of the potential

equation which shall take on the assigned values upon them. If

this can be done for any complex variable, it is then an easy matter

to retrace the steps of the transformation and obtain the potential

function which was originally desired. It is frequently found that

these intentional distortions of the space rob the original problem of

much of its complexity, and in many cases lead to finite solutions of

problems which for direct attack would seem to be very formidable.

II. POTENTIAL OF A LINE SOURCE SURROUNDED BY CON-
CENTRIC CIRCULAR CYLINDRICAL ARCS AT ZERO
POTENTIAL

If the potential is found for the case where there is only one cir-

cular arc, whose angular range is from — 2? to^ where 0<p<Tr, for

the z plane, then the original problem of n arcs may be readily found

from this by the transformation Z" = 2. Postponing this transfor-

1 The question arises in the use of the corona voltmeter as used by Professor Whitehead. The outer

cylinder is perforated to permit the passage through it of ions on their way to an outer collecting electrode.
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mation for the present, it will be more simple to begin with the

transformation
a{i — z')

x-\-iy = z=
i + z'

that is

x'^ + (7/+iy

This mav also be written

2ax'

x''-\-{y' -\-lf

which is the same as

X -\-iy =z =

x'=— 2«2'

a+ z

,_ o^— x^— y'^

(1)
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Fig. 1.

—

Section of charged cylinder in z plane

This gives a one-to-one correspondence between the z and z' planes.

The circle of radius a and center at the origin in the z plane corre-

sponds to the entire real axis ?/' = in the z' plane. Points inside

this circle correspond to points in the upper half of the z' plane. A
certain part of this circular arc will be assumed to be the trace of a
cylindrical conductor at zero potential.
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In Figure 1 the circle r = a is shown in the z plane and the values

of x\ which correspond to several points on this arc. The conducting

arc is given by r = a, —p<6<p.
In order to find a real potential function U (xy) produced at a

point z in the z plane by a line source of strength at some point

2l=cCl + ^2/lJ in the z plane, in the presence of the circular cylindrical

arc at zero potential, we must find a potential U {x'y') for the

2' plane which corresponds to a line source at the point z\=x\-Tiy\

= i\
, M in the presence of a strip at zero potential, which strip

extends from cc' == — c to a' = + c = tan ^ on the real axis. (See fig. 2.)

n

m

•z:

Z'-p/ane

*c
X'

32

Fig. 2.

—

Section of charged strip in the z' plane

To do this we may next transform this entire 2' plane into a semi-

infinite strip on the w plane where

Wi^U + lV tan

by the equation

z =c cos w or
x^ = c COS u cosh V

y' = —csinu sinh v.
(2)
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The straight line v = Vq>0 where — tt^u^tt corresponds to an

ellipse in the z' plane whose foci are at x' = ± c, y' = 0. In par-

ticular, the line v = ( — 7r<u<7r) corresponds to the conductor at

zero potential in the 2' plane. Some point Wi = Ui^-ivi where z\ = c

cos Wx corresponds to the line charge. One must then find a poten-

tial TJ {uv) for the w plane corresponding to the line charge Q at the

f
'>0^

x'<0 ^/COSU<0

I

w;

6/n u<
.v^

x>0.
r ^K.

W'plane

nr

'<0.
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w
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y^
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Fig. 3.

—

Semi-infmite strip in the w plane

point Wi in this strip of the w plane, which vanishes when v = 0, and

which must be periodic in u of period 27r. Now it is evident that the

real part of the function

will vanish on the entire real axis of w and will contain the required

singularity corresponding to the line charge in the upper strip,

namely, —2Q log (w — Wi). The term

2Q log {w-Wi)=-2 (-Q) log [w- (ui-ivi)]
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corresponds to a negative line charge —Q set its image point (or

conjugate point) an equal distance below the real axis. This, how-
ever, is not a periodic function of u. Such a periodic solution may
be obtained by imagining such pairs of equal and opposite line

charges at conjugate points to be repeated periodically in u with
period 27r, so that

^=^7+^F=2(^ f^log ^"^^-f
^

^ JLJ ^w-Wi-2'Kn
7»=—OO

= 20 log "^-=^ + 20 yiW (^-^.-2Tn) (w-w, + 2^n)
^ ^w-w,^ ^21j'"^(m)-Wi-2to) (w-w,+27rw)

= 2eiog^^^^+29 Slog r""d

(^).5[-('£?)T
Z

The infinite product for sin ^ is

Hence
. W — Wism —??:

—

^ / — \

Tr=2<2 log-_?_ =(2 log
-cos «>-«>.

^ ^ . i(j— m;i ° 1 — cos iw — Wi)sm-2-
Or

Txr 7-7 , -Tz -n 1 1 —cos W\ COS -i/; — sin Wi sin lo ,„.
H'= C/+ iF= Q log 3 ^ '. (3)° 1 — cos Wi cos w — sin Wi sm w

It is evident, therefore, that the real part of the second member of

equation (3) gives a potential function U which is periodic in u of

period 27r and which vanishes at the base of the semiinfinite strip in

the w plane, and has one singularity in this strip corresponding to

the line charge at Wi.

If we now return to the z' plane, replacing w in terms of z' in

equation (3), this will give the Green's function Z7for the z' plane

external to that part of the real axis between — c and c, for TJ will

vanish here and will have a logarithmic singularity at the one point
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z\ in the z' plane corresponding to the one singularity at Wi in the

half strip.

If 2/ is the conjugate of Zi we may place

cos W =

W =

in. —

c'

= sin

cos Wi =

u cosh

-7/., pneli

C
*

v + i

COS Wi

cos u

c

sinh v=sin
yjc'-z''

c

ain '

^c'-z'
' 2

where, by the radical yjc^ — z''^ we must understand that branch of

the double-valued function of z\ whose real part has the same alge-

braic sign as sin u and whose imaginary part has the same algebraic

sign as cos u (because v is always positive). (See fig. 3.)

Similarly Vc" — z'\ must denote that branch whose real and imagi-

nary parts have the algebraic signs of sin Ui and cos Ui^ I'espectively.

Finally, since

sin W\ = sin Ui cosh Vi — i cos Ui sinh Vi

we may replace sin Wi hj^/c^— z'i^; that is, the conjugate oi-y/c^ — z'i^.

This mterpretation of the branch of the square rootVc^— 2'^ may
also be put in terms of the position of the point 2' in the plane. Thus

a ^f^^^'=A + iB
A>Oiiy'<0

A<Oiiy'>0

Stated in words: The complex radical -y/c^

whose real part A is positive when the point z' lies below the real axis

and whose real part is negative when the point 2' lies above the real

axis. This real part will vanish when z' lies on the real axis outside

the conducting strip, but will approach equal and opposite values

different from zero when z' approaches this strip from opposite sides.

The imaginary part, B, of -yjc^— z'^ will have the same sign as cc',

being positive, in general, if z' lies to the right of the y' axis and
negative if to the left. But it will vanish on the conducting strip.

Similarly by -ylc^ — z'i must be understood that branch which

depends upon the position of the point z\ in precisely the same

manner as -yjc^— z'^ depends upon z' . With this understanding,

equation (3) becomes

^ c'-z\z'--yjc'-z\'-ylc'-z''

The real part of this vanishes when the point z' comes on the con-

ducting strip, for then z' is real and numerically less than c. Hence,

6849°—26 2
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whenever this strip is approached either from above or below, the

numerator and denominator of this fraction become conjugate

imaginaries and the real part of the logarithm vanishes.

It might appear, at first glance, that the second member of equation

(4) would vanish if c were allowed to become infinite, whatever the

position of the points z\ and z'. This is not the case, however, for

1

W=Qlog
1

V-^V-g-(^)g)
V'-SV'-?-(tO©

where

V 1
2
"= 1 ~^T~2 if 0' is below the real axis

C" JtC

"^ ~ 1 +9^ • . • • if 2' is above the real axis

Similarly

V

V

„f 2 „f 2

^
c' ^ 2c2

V1-

1 +

1 +

if z'l is below the real axis

if z'l is above the real axis

c' 2 c^
• • •

.

Hence, if both z' and z'l are above the real axis or both below it

W=2Q\og^^

But if z' and z'l are on opposite sides of the real axis then W=0,
Thus the expression equation (4) reduces to the ordinary one when

the conductor at zero potential extends along the entire real axis.

To return finally to the original z plane, we may, in equation (4),

replace z' by

<^Jc bv tanf. .'. by-<|^). and i'. by[- <|^:)]
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This gives

where if

then J. (or J.i) is positive or negative according as 2 (or 2i) is outside

or inside the circle z = ae^^; B (or Bi) is positive or negative according

as z (or Zi) is above or below the real axis. If z (or Zi) is on that part

of the circle which is outside the conducting arc, then A (or Ai)

vanishes. If z (or Zi) approaches the conducting part of the circular

arc, then B (or ^1) vanishes while A= ±-W tan^ ^— tan^ 2' \otAi =

dr-*/tan^^ — tan^-^ j being positive or negative according to whether

the conducting arc is approached from the outside or the inside of the

circle. Since —,— becomes i tan ^ then for either direction of
2 + q; 2

approach the numerator and denominator of the fraction in the

second member of equation (5) become conjugate imaginaries so that

the real part of the logarithm (and hence U) vanishes. From the

mode of derivation equation (5) it is evident that the only singularity

of the function W in the entire z plane external to the conducting

arc is at the point 2 = 21. The two extremities of the conducting arc

at z = ae^^ and z = ae~^^ are readily seen to be branch points, for we
may write

{z + aYcos^ ^
If one imagines the conducting arc to increase until its extremities

touch, thus closing the circle so that 2> = tt, this corresponds to the

case where c = tan ^ = 00 ; that is, when the entire real axis of 2' is
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at zero potential. The same argument which was applied to this

particular case in the 2' plane, may be applied here, and it shows

that if one of the two points z and Zi is within and the other without

the circle the value of Tf is zero; but if both points are within or both

without the circle, the value of W reduces to the familiar one for the

case of a line charge in the presence of a complete circular boundary

at zero potential.

If as a particular case the line charge is on the real axis, then Zi is

real (=Xi). In this case the dashes may be omitted in equation (5)

since they serve to indicate the conjugate of quantities which now
are real. Equation (5) then becomes

L 2 3^1 +«V \Xi — ot/ 2 \ 2 \z + aj
/Xi -a\/z- Q!\"j

L 2 Xi +a\ \Xi-aJ 2 \ 2 \z-\-a/

where the radical involving Xi is to be taken as a positive real.

In case the line charge is at the origin (center of the circle) then

Xi = and equation (6) becomes

• 2? I

/(2-«e*P) {z-ae ^^) z— a ^p
2 V {z +ay z + a 2

{z — a) cos^^+(2+ q;) sin^^

= Q log p =L
(7)

— (z— a) cos^^-\- {z — a) sin^^

-h-yJiz-ae^^) (2-ae-^P)

Zi cos^ f+ 23 sin^ f + V22 24

Zi cos^ 2'^^s sin^ | + V22 ^4

where the four vectors Zi, Z2, Z3, and 24 are drawn to the variable point

z = re^^ from the four fixed points a, ae^P, — a, ae~^P, respectively, so

that (fig. 4)

Zi=z— a = rie'** 23^2 + a = rge^^

22^2— ae^P= r2e*^» 24^2— ae — ^p= r4e»^<
(8)
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It must be remembered that the radicals in equation (7) designate that

branch whose real part is positive when the point z is outside the circle

r = a. The ambiguity may be removed by making the following speci-

fications as to the angles Oi, 62, d^, 6^. The value to be assigned to each

of these angles at any point z in the plane, is any value which it may
attain by continuous variation as the point is reached after starting

from an infinite distance to the right on the real axis (where each of

these angles has the value zero), provided that the point z never

crosses that part of the circular arc which is at zero potential. The
four vectors with their moduli and angles are shown in Figure 4.

With this understanding equation (7) may be written

rie^'cos^^+ rae^** sin^§+ V'*2''4« ^

F=t7+i7=eiog —— _ ,Mj, (9)

— rie^"' cos^ ^+ r^e^^ sin"^+ V^2^46 ^

The equations (7) or (9) then define a potential function V which is

continuous and single valued at all points external to the charged arc

except the origin which contains the line charge of strength Q. This

potential will vanish on the charged arc. The corresponding flux

function V which is conjugate to TJ will approach different values on

opposite sides of the same point on the conducting arc.

To verify these statements we may note first that when - is small

equation (7) gives the following development

^ ^z^ sm^ jp

=2d-log . + log-^-cos»|.5+ cos^|(l-|cos^|)|+.. .-I

This shows that the principal part of W when - is small is - 2Q log 2

which corresponds to the line charge of strength Q at the origin.

(10)
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To show that the potential U vanishes when the point z approaches

the charged arc, we note that if z is any point on the entire circular

arc, then z = ae^^, —;

—

=i tan 77 and'
' z + a 2

V'
(2

irr-T zi^ -% / sin^ ~ — sin^— ae'P) {z — ae ^^) V 2

(2 + a)^
cos

so that the potential U at any point on the circle r= a is the real part of

F=«log
sin^ ^ cos ^ +V

2P • 2 ^ I
• • ^ 2?sm^ ^ — sm"^ o + '2' sin k cos^ ^

^
sin^

I
cos ^ + -Wsin^ sm' sin o cos^

2>

(11)

If, further, the point is on that part of the circle which is conducting

--p<d<p the radical in equation (11) is real, the numerator and
denominator are conjugate imaginaries, and the real part of the

logarithm, the potential, vanishes. If, on the other hand, the point

is on that part of the circular arc not occupied by the conductor,

the radical is imaginary and the potential by equation (11) has the

variable value

[7=2(2 log

(12)

= 2Q cosh

The flux function V is also of interest for its level lines are the

lines of force, and its value at the conducting surface measures the

surface density of charge there. To find Vq at any point 6 on the

outside of the conducting arc, suppose that the point P of Figure 4

comes up to such a point from the outside. The point is given by
2=(a; + 0)e^^. From the geometry of the circle if ^>0

V^2^4= 2q: -*/ sin' 2_

/"i
= 2a sin

ra= 2a cos
^

sin^ -^ and
62+64

2

6
= 2

61-h IT

2

63-
6

2

(13)
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Substituting these values m equation (9) gives since U=0

.2 V

643

Fo4log
'

ysi]cos r. sin^ ^+ -i/sin^ ^_oi»^2
^ — sm'' K + ^ sm 2 cos'

^

Fig. 4.

—

Polar coordinates in the z plane

If the point P now moves up around the upper extremity of the

charged arc and comes back to this same part 6 of the charged arc

from the inside, 6^ is increased by 27r and all the other angles and
moduli in equation (13) return to their original values. This gives

for the value of F^ on the inner side of the same point, by equation (9)

^ cosi^sm^^
7,=^ log 1 ^

cos 2 sm"^ ^

-V
V e e

sm'' 77 — sm'^ o + '2' sm o cos'' ^

ysin^l- sm'^ 2 ~ '^ ^^^2 ^^^ 2

[

(15)

= Q\ 27r-sin- -d
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By means of equations (14) and (15) we may find the surface density

<T of the charge on either side of the conducting arc. The density <ri

on the inside is given by

(dU\ _iaF.-o_ Q\—~~r=±-^ =+ l1
\dr )r=.a-o cc dS « cos|Jtan2|-tan2|

Similarly the density on the outside is given by

4"'o--i%^=-^l . P /_,p _,0 -| (17)80 « coslytan^l-tan^^

The total density (including both sides) is given by

20 1
4ir(r= 47r((ro + o-j)=

(18)

It is interesting to note that the total density <t given by equation

(18) is precisely that which would exist on the charged arc with a

total charge —Q in the absence of any external charges. The poten-

tial for this case may be found from equation (7) by subtracting

from its second member the term 2Q log - - Similarly adding to this

side of the equations any term of the type c log z gives the correspond-

ing potential when the line charge at the origin and the total charge

on the conducting arc are each arbitrary. In the absence of any

external charge, the densities would be given by interchanging the

subscripts i and o in equations (16) and (17).

If we make the final transformation 2 = Z° and let a = a^ and a=-^ n
where a>0, and 7i is a positive integer, then the entire z plane is

repeated in each of the n sectors of the Z plane which is bounded

by two straight lines radiating from the origin having an angular

aperture— Equation (7) then becomes

,,, ^, a°- Z° cos nq- V(2°- a°«'°'') (2° - a^e"*"'')W=Q log —
4 cos'' -^

+ e log [a"" cos ng- Z°- ^/iZ''- a^e*"'^) (Z"^- a^g"''^')] (19)

-2nQ log Z-Q log sin'

^
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where the radical indicates that branch whose real part is negative

when|Z|<a. Now

\r = R^
2 = 7.6»^ = Z° = J?V°* or]

Hence, if the point z describes the circular arc of radius a from
6= —p to d= p, the point Z will describe the circular arc of radius a

from <^=—^=— 2 to 4>= z:=9.- Hence, there are n equal, equally

spaced, arcs of the circle R= a, each of angular width 2q, upon which
the real part of the second member of equation (19) vanishes. When
z . Z° R^
-is replaced by—5= -^e'°* the expansion equation (10) gives

I

i?(sinf)" ^V^y n (20)

R 1

If — is as small as jjz and n as large as 8, the second term of this

expression is of the order of 10~^ and may certainly be neglected.

The potential U is then a function of R only. Over the circle R = h

where (- j is small, the potential U has the constant value Z7b where ^

i^b= «log—
h^ sin^

nq (21)

This equation enables one to eliminate the charge Q from the

equation for the potential, introducing instead the potential Ub of

the inner rod. For the purpose of computing U or drawing lines of

force, it will probably be more convenient to do this first for the

z plane using the polar coordinates r and 6, by means of the equation

(9). The corresponding points in the Z plane are then found by
replacing r by R^, 6 by n^, and a by a°.

The computation of the potential U for any point (r, 6) in the plane

may best be made by evaluating the four radii n, r2, ra, and r^, and the

2 It may be noted that the electric field intensity under these circumstances is very uniform at all points

of the inner cylinder of radius b, its value being

_/aOA Ub 1

1+——/
wlog-^

This reduces to the known value when the circular arcs touch, thus closing the circle, for in that case

^— |- so that log CSC ^-=0
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angles ^1, 02) 63, and 6^ in terms of r and d according to their definitions

by the equation (8). This may be done either graphically or arith-

metically {p = nq and « = a° must be given). The explicit formula

for the potential U at any point in the plane is then found by taking

the real part of equation (9). It is

where

/ (ri, ra • • • • 7-4, (9i • • • • ^4) =

= ri cos^ ^ + r^ sin^ ~ + r*2r4

+ 2 riTz sin^ | cos^ | cos (63-61)

+ 2 ri V^2^4 cos^ I
cos ( ~^"2~*~^i)

+ 2 rg V^2^4 sin^ ~ cos ( ^
^

^ -63)

(22)

(23)

Washington, March 20, 1926.


